Describe the issue:
FYI : The default value of max_concurrent_shard_requests
for _search API is 5.
For comparing between max_concurrent_shard_requests (5 vs 15), I picked up only 1% of users.
Surprisingly, though 1/100 API is called with the query parameter (max_concurrent_shard_requests=15), metrics for API latency seem to be much more stable in volatility and to have less up-and-down patterns than before.
But I’m curious of the reason that whether only 1% of _search APIs can improve performance. Does only few change in accessing concurrent shards make a big result?
(ex. High max_concurrent_shard_requests
lets Query Cache to be stored faster.)
My situations:
- Almost every indices have heavy size documents in cluster:
green open xxx.reindex_2022.10 nHGTKkWGSzqi-k0I1pyBkg 8 2 829312 1181 38.4gb 12.8gb
green open xxx.reindex_2022.11 o0tI5rE-TEWKx_Jzoi2Xpg 8 2 1236982 2165 72.4gb 24.1gb
green open xxx.reindex_2022.12 TdTiyJHDSZubYhi-Pjrtuw 8 2 1963307 1415 170gb 56.6gb
green open xxx.reindex_2023.01 dNY1rAoFRUSj1cuX-jyqOg 8 2 1201577 1632 51.8gb 17.2gb
...
green open xxx.reindex_2024.05 WlhutjMARg6SBWyoABY2zw 8 2 1029606 11817 32.4gb 10.8gb
green open xxx.reindex_2024.06 lqAWgna7Sc6x5uMzr3JxXw 8 2 953041 109980 27.8gb 9.2gb
green open xxx.reindex_2024.07 -lS3sKEHQQu2HusEawF-UQ 8 2 1473063 121489 24.6gb 8gb
- Status of cluster:
- cpu: 12vCore
- jvm : 32GB (each Data Node)
- The number of primary shard : 1
- The number of replica shard : 2 (for reducing _search API latency)
Documents : 104625405
Disk Usage : 7.3 TB
Primary Shards : 1989
Replica Shards : 3941